Search results for "Measure space"

showing 10 items of 24 documents

Approximation and quasicontinuity of Besov and Triebel–Lizorkin functions

2016

We show that, for $0<s<1$, $0<p<\infty$, $0<q<\infty$, Haj\l asz-Besov and Haj\l asz-Triebel-Lizorkin functions can be approximated in the norm by discrete median convolutions. This allows us to show that, for these functions, the limit of medians, \[ \lim_{r\to 0}m_u^\gamma(B(x,r))=u^*(x), \] exists quasieverywhere and defines a quasicontinuous representative of $u$. The above limit exists quasieverywhere also for Haj\l asz functions $u\in M^{s,p}$, $0<s\le 1$, $0<p<\infty$, but approximation of $u$ in $M^{s,p}$ by discrete (median) convolutions is not in general possible.

Applied MathematicsGeneral Mathematicsmedian010102 general mathematicsMathematical analysista111QuasicontinuityMedianMetric measure space010103 numerical & computational mathematicsTriebel–Lizorkin spaceTriebel–Lizorkin space01 natural sciencesFractional Sobolev spaceCombinatoricsmetric measure spaceBesov spacequasicontinuityLimit (mathematics)0101 mathematicsBesov spacefractional Sobolev spaceMathematicsTRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
researchProduct

The Bishop–Phelps–Bollobás theorem for L(L1(μ),L∞[0,1])

AbstractWe show that the Bishop–Phelps–Bollobás theorem holds for all bounded operators from L1(μ) into L∞[0,1], where μ is a σ-finite measure.

Bishop–Phelps–Bollobás theoremMeasure spaceOperatorNorm attainingAdvances in Mathematics
researchProduct

Generalized Lebesgue points for Sobolev functions

2017

In this article, we show that a function $f\in M^{s,p}(X),$ $0<s\leq 1,$ $0<p<1,$ where $X$ is a doubling metric measure space, has generalized Lebesgue points outside a set of $\mathcal{H}^h$-Hausdorff measure zero for a suitable gauge function $h.$

Discrete mathematicsDominated convergence theoremmedian010102 general mathematicsLebesgue's number lemmaRiemann integralSobolev spaceLebesgue integration01 natural sciencesLebesgue–Stieltjes integrationFunctional Analysis (math.FA)Mathematics - Functional Analysis010101 applied mathematicssymbols.namesakemetric measure spaceDifferentiation of integralsSquare-integrable function46E35 28A78FOS: MathematicssymbolsLocally integrable function0101 mathematicsgeneralized Lebesgue pointMathematicsCzechoslovak Mathematical Journal
researchProduct

Finitely randomized dyadic systems and BMO on metric measure spaces

2015

Abstract We study the connection between BMO and dyadic BMO in metric measure spaces using finitely randomized dyadic systems, and give a Garnett–Jones type proof for a theorem of Uchiyama on a construction of certain BMO functions. We obtain a relation between the BMO norm of a suitable expectation over dyadic systems and the dyadic BMO norms of the original functions in different systems. The expectation is taken over only finitely randomized dyadic systems to overcome certain measurability questions. Applying our result, we derive Uchiyama’s theorem from its dyadic counterpart, which we also prove.

Discrete mathematicsMathematics::Functional AnalysisDyadic cubeApplied Mathematicsta111Mathematics::Analysis of PDEsMathematics::Classical Analysis and ODEsMetric measure spaceBounded mean oscillationQuantitative Biology::OtherBounded mean oscillationRandomized dyadic systemMetric spaceNorm (mathematics)Dyadic BMOAnalysisMathematicsNonlinear Analysis: Theory, Methods &amp; Applications
researchProduct

A new Cartan-type property and strict quasicoverings when p = 1 in metric spaces

2018

In a complete metric space that is equipped with a doubling measure and supports a Poincar\'e inequality, we prove a new Cartan-type property for the fine topology in the case $p=1$. Then we use this property to prove the existence of $1$-finely open \emph{strict subsets} and \emph{strict quasicoverings} of $1$-finely open sets. As an application, we study fine Newton-Sobolev spaces in the case $p=1$, that is, Newton-Sobolev spaces defined on $1$-finely open sets.

Discrete mathematicsfine Newton–Sobolev spaceProperty (philosophy)General Mathematicsta111010102 general mathematicsOpen setfine topologystrict quasicoveringType (model theory)function of bounded variationmetriset avaruudet01 natural sciencesMeasure (mathematics)Complete metric spaceCartan propertyfunktioteoria010101 applied mathematicsMetric spacemetric measure spacepotentiaaliteoria0101 mathematicsFine topologyMathematicsAnnales Academiae Scientiarum Fennicae Mathematica
researchProduct

Interpolated measures with bounded density in metric spaces satisfying the curvature-dimension conditions of Sturm

2011

We construct geodesics in the Wasserstein space of probability measure along which all the measures have an upper bound on their density that is determined by the densities of the endpoints of the geodesic. Using these geodesics we show that a local Poincar\'e inequality and the measure contraction property follow from the Ricci curvature bounds defined by Sturm. We also show for a large class of convex functionals that a local Poincar\'e inequality is implied by the weak displacement convexity of the functional.

Mathematics - Differential GeometryPure mathematicsGeodesicPoincaré inequalityMetric measure spaceCurvature01 natural sciencesConvexitysymbols.namesakeMathematics - Analysis of PDEsMathematics - Metric GeometryFOS: MathematicsMathematics::Metric Geometry0101 mathematicsRicci curvatureMathematicsProbability measure010102 general mathematicsta111Measure contraction propertyMetric Geometry (math.MG)53C23 (Primary) 28A33 49Q20 (Secondary)Functional Analysis (math.FA)010101 applied mathematicsMathematics - Functional AnalysisMetric spaceRicci curvatureDifferential Geometry (math.DG)Poincaré inequalityBounded functionsymbolsMathematics::Differential GeometryAnalysisAnalysis of PDEs (math.AP)
researchProduct

Tensorization of quasi-Hilbertian Sobolev spaces

2022

The tensorization problem for Sobolev spaces asks for a characterization of how the Sobolev space on a product metric measure space $X\times Y$ can be determined from its factors. We show that two natural descriptions of the Sobolev space from the literature coincide, $W^{1,2}(X\times Y)=J^{1,2}(X,Y)$, thus settling the tensorization problem for Sobolev spaces in the case $p=2$, when $X$ and $Y$ are infinitesimally quasi-Hilbertian, i.e. the Sobolev space $W^{1,2}$ admits an equivalent renorming by a Dirichlet form. This class includes in particular metric measure spaces $X,Y$ of finite Hausdorff dimension as well as infinitesimally Hilbertian spaces. More generally for $p\in (1,\infty)$ we…

Mathematics - Differential Geometrymetric measure spacesDirichlet formsminimal upper gradientFunctional Analysis (math.FA)Mathematics - Functional Analysistensorization46E36 (Primary) 31C25 (Secondary)Differential Geometry (math.DG)Sobolev spacesFOS: Mathematicsanalysis on metric spacespotentiaaliteoriafunktionaalianalyysi
researchProduct

Failure of topological rigidity results for the measure contraction property

2014

We give two examples of metric measure spaces satisfying the measure contraction property MCP(K,N) but having different topological dimensions at different regions of the space. The first one satisfies MCP(0,3) and contains a subset isometric to $\mathbb{R}$, but does not topologically split. The second space satisfies MCP(2,3) and has diameter $\pi$, which is the maximal possible diameter for a space satisfying MCP(N-1,N), but is not a topological spherical suspension. The latter example gives an answer to a question by Ohta.

Mathematics - Differential Geometrymetric measure spacesGeodesicPhysics::Instrumentation and DetectorsQuantitative Biology::Tissues and Organsmeasure contraction propertyMetric Geometry (math.MG)53C23 (Primary) 28A33 49Q20 (Secondary)Ricci curvature lower boundsTopologyPotential theorymaximal diameter theoremnonbranchingRigidity (electromagnetism)Mathematics - Metric GeometryDifferential Geometry (math.DG)splitting theoremFOS: MathematicsSplitting theoremContraction (operator theory)AnalysisMathematicsgeodesics
researchProduct

Nonexistence of Quasiconformal Maps Between Certain Metric Measure Spaces

2013

We provide new conditions that ensure that two metric measure spaces are not quasiconformally equivalent. As an application, we deduce that there exists no quasiconformal map between the sub-Riemannian Heisenberg and roto-translation groups.

Mathematics - Differential Geometrymetric measure spacesPure mathematicsMathematics::Dynamical SystemsMathematics::Complex VariablesGeneral MathematicsExistential quantificationta111010102 general mathematicsMetric Geometry (math.MG)01 natural sciencesMeasure (mathematics)quasiconformal equivalenceDifferential Geometry (math.DG)Mathematics - Metric Geometryquasiconformal mappingsMathematics - Classical Analysis and ODEs0103 physical sciencesMetric (mathematics)Classical Analysis and ODEs (math.CA)FOS: MathematicsMathematics (all)010307 mathematical physics0101 mathematicsMathematicsInternational Mathematics Research Notices
researchProduct

Equivalent definitions of very strict $CD(K,N)$ -spaces

2023

We show the equivalence of the definitions of very strict $CD(K,N)$ -condition defined, on one hand, using (only) the entropy functionals, and on the other, the full displacement convexity class $\mathcal{DC}_N$. In particular, we show that assuming the convexity inequalities for the critical exponent implies it for all the greater exponents. We also establish the existence of optimal transport maps in very strict $CD(K,N)$ -spaces with finite $N$.

Mathematics - Differential Geometrymetric measure spacesdifferentiaaligeometriaRicci curvatureMathematics - Metric Geometryoptimal transportDifferential Geometry (math.DG)Optimal transportFOS: MathematicsMetric Geometry (math.MG)Geometry and Topology53C23Metric measure spaces
researchProduct